
Increasing the Creativity of ENGINO Toy Sets and
Generating Automatic Building Instructions

A. Araújo, CMUC, Department of Mathematics,
University of Coimbra, Portugal

A. Gibali, Department of Mathematics, ORT Braude College,
Israel

A. Kyprianou, Department of Mechanical and Manufacturing
Engineering, University of Cyprus

E. Antoniou∗, Department of Information Technology, Alexander
Technological Educational Institute of Thessaloniki, Greece

M. D. Bustamante, Institute for Discovery, School of
Mathematics and Statistics, University College Dublin, Ireland

Y. Kaminski, Applied Mathematics Department, Holon Institute
of Technology, Israel

W. Okrasinski, University of Technology, Institute of
Mathematics and Computer Science, Wroclaw, Poland

Team participants
A. Araújo, A. Gibali, A. Kyprianou, E. Antoniou,

M. Bustamante, Y. Kaminski, W. Okrasinski, G. Benhame,
A. Riseth, C. Morosanu, I. Porumbel, C. Deliyiannis,

A. Micheletti, P. Hjorth, H. Ockendon

The problem was presented by
Costas Sisamos, Founder and General Director, ENGINO Ltd

at the 125th European Study Group with Industry (ESGI125)
(1st Study Group with Industry in Cyprus, www.esgi-cy.org)

Abstract
During the First Study Group with Industry which was held in Limassol, Cyprus,

the ENGINOR© TOY SYSTEM introduced two challenging problems. The first is to
get bounds on the number of possible models/toys which can be constructed using
a given package of building blocks. And the second is to generate automatically the
assembly instructions for a given toy. In this report we summarize our insights and
provide preliminary results for the two challenges.

Keywords: 05A05, 05C20, 05C40
∗Corresponding author.

1

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

1 Introduction
ENGINO R© TOY SYSTEM was founded by Costas Sisamos in 2004 in order to commercialize
his invention of a new system of multi-functional plastic connectors. After successfully
receiving research funding, Costas left his full-time job as an educator to fully engage in
R&D, and after 3 years of designing, prototyping and testing, in 2007 he launched the first
sets of ENGINO construction toys. The ENGINO toys are created by assembling small
pieces together, with the purpose of helping pupils build technological models creatively
and easily so that they can experiment and learn about science and technology in a playful
way. The products grasped the attention of global buyers and toy experts and by now more
than 60 different toy sets are manufactured in his production facility in Limassol, Cyprus,
covering various age levels and price ranges, from simple sets to solar energy and robotics.
The company has experienced steady growth, reaching presence in more than 40 countries
by now.

Each of the 60 toy sets produced by ENGINO has a specific number of blocks that can be
assembled into many different models. Based on experience, it has been observed that the
creative potential of the system increases geometrically as the number of blocks in the set
increase. This is due to the patented design of the ENGINO blocks that allow connectivity
from many directions simultaneously.

2 Description of the challenges
For this 125th European Study Group with Industry, that took place in Limassol, Cyprus,
from 5-9 December 2016, the company proposed two challenges.

1. Given a package of blocks, evaluate the number of possible models/toys using the
package’s blocks. With this “creativity measure" the company is able to know if
the sets have indeed been optimized or if more models are also possible. Also, by
substituting some blocks with others maybe the level of creativity can be increased.
Furthermore it will provide a marketing tool to explain the creativity of the system.

2. Another big challenge for the company is to be able to generate the assembly instruc-
tions for each toy automatically. For most of the toy sets the instructions are currently
being created manually. The developers attempted to create an automatic disassembly
module in a proprietary 3D builder software which is based on the UNITY 3D-Game
Engine. However, the system cannot predict which block needs to be connected first
during the assembly instructions. The priority of parts is random and incorrect, mak-
ing the generated instructions not usable.

It is important to find a solution to this problem and have an algorithm that will
be able to prioritize the different parts of the structure or substructure, which we
can feed in the software so that we shall optimize the de-structuring of a model with
physically correct priority sequence. There may be endless possibilities that can work
so a solution may seem impossible, however there some solutions that definitely will
not work and those are the ones we need to be able to identify and remove from the
possible assembly sequence.

The main goal of this report is to give an answer to second challenge. Nevertheless, we
will give a partial answer for the first one, considering the particular case where we just have
constructions obtained by linearly assembling the blocks. We may define a linear assembly
construction as a model obtained by an ordered sequence of blocks such that each block is
connected only to the previous (if it exists) and to the following (if it exists) ones.

2

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

Figure 1: Linear assembly

Theorem 1. Given a set of n blocks (Bi,1, . . . , Bi,n), the number of possible linear assemblies
with this set is given by

N =
1

t1! . . . tk!

∑
1≤i1<···<in≤n

v(Bi1) v(Bin)

n−1∏
j=2

(
v(Bij)− 1

)
,

where tj is the number of blocks of type j and v(Bij) is the valency of a block Bij , defined
as the maximal number of possible connections of Bij .

Proof. The first piece offers a number of connections equal to its valency. Other pieces can
be connected to the previous one in a number of ways equal to their valencies. Except the
last one, they also offer a number of possible connections to the following piece equal to
their valencies minus one.

During the meeting P. Hjorth and H. Ockendon proposed a formulation of optimization
problem whose solution could help the company build packages able to produce a maximal
number of models under given constraints. The optimization model was developed by A.
Riseth and its results can be found in Appendix A of the present report.

3 Mathematical model and analysis
Let us now focus on the second challenge. As we mentioned before, currently, for most toys,
the instructions are being created manually. Our goal is to develop an automatic assembly
instruction manual for each toy. To do this we actually follow the reverse process, that is,
given a description of a toy model, which is available in the company’s database, we develop a
method to check whether a disconnection between particular blocks of the model is physically
possible. In what follows we call this procedure a Physically Feasible Decomposition (PFD) of
the model. The result of such a decomposition would be a collection of sub-models, on which
the method can be recursively applied until no further decompositions are possible. Once
the model has been decomposed to its constituent blocks, the steps of the decomposition
can be reversed to produce its assembly instructions manual.

We now present the proposed framework for the solution of the decomposition problem
discussed above, based on a graph theoretic approach. Given a toy model M , we associate
to it a directed graph G(V,E), where

• V = {v1, v2, . . . , vn} is the vertex set of G with each vertex vi corresponding to a block
of M ,

• E = {(u, v) : u∈V, v∈V} is the edge set of G, with each directed edge representing a
connection between two blocks of the model.

3

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

Every physical connection between two blocks of the model can be aligned in space to one
particular direction vector, chosen out of a finite collection of directions. For instance, if a
model uses only perpendicular connections between its blocks in 3D space, we can identify
three direction vectors î, ĵ, k̂ along which all connections can be aligned. A connection
between two blocks of the model u, v, aligned to a particular direction d̂ in physical space,
gives rise to a directed edge (u, v) ∈ E, if the vector from u to v points towards the same
direction with d̂.

Assuming that all the connections of the model M correspond to p distinct spatial di-
rections, we can partition the edge set E into a family of p mutually disjoint sets Ei,
i = 1, 2, . . . , p, each of which contains the edges associated to connections sharing the same
direction in space.

Principle of Physically Feasible Disconnection: In order to disconnect two blocks cor-
responding to vertices vs, vt ∈ V , connected via an edge (vs, vt) ∈ E aligned to a given
spatial direction d̂, the blocks vs, vt must be able to be displaced along the directions
−d̂, d̂ respectively, when appropriate opposite forces are applied on the blocks.

The idea behind the above principle is illustrated in the following example.

Example 1. Consider the two blocks shown in the following figure (Fig. 2)

Figure 2: Two blocks that can be disconnected

The blocks 1, 2 can be disconnected using two opposite horizontal forces, since their
application on the two blocks will result in displacements along the horizontal direction.

If a third block is added as shown in the following picture (Fig. 3)

Figure 3: Blocks 1, 2 cannot be disconnected

then the blocks 1, 2 cannot be disconnected by applying on them opposite horizontal forces,
since their displacement is blocked by their vertical connections to the block number 3.

Our aim is to identify a set of connections between the blocks of the model that can be
disconnected simultaneously without violating the Principle of Physically Feasible Discon-
nection stated above. We call this a Physically Feasible Decomposition (PFD) of the model.
The problem of finding a PFD of a toy model can be stated as follows:

Problem 1. Find a subset of edges Ēi ⊆ Ei, for some i = 1, 2, . . . , p, whose removal imply
a PFD of the model into two or more submodels.

4

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

To obtain a PFD we propose the following procedure:

1. Choose a subset of edges Ēi ⊆ Ei, whose connections are aligned in the same spatial
direction.

2. Remove all edges of Ēi from G and all directions from edges to obtain the undirected
graph G′(V,E \ Ēi).

3. Apply some connectivity search algorithm (see Algorithm 1) on G′ to identify its
connected components Cj , j = 1, 2, . . . , k.

4. For each (s, t) ∈ Ēi, identify the pair of components (Cs, Ct) such that s ∈ Cs and
t ∈ Ct.

5. Considering the connected components Cj , j = 1, 2, . . . , k, as vertices and the (dis-
tinct) pairs of components resulting from step 4 as directed edges, create the directed
Components Connectivity Graph (CCG). We denote the directed CCG by GC(VC , EC),
where VC = {C1, C2, . . . , Ck} and EC is the set of (distinct) pairs of components re-
sulting from step 4 as directed edges.

Input: Undirected version of the graph G(V,E) and a subset of edges Ēi ⊆ E on a given
direction to be removed.

Output: Connected Components C1, C2, . . . , Ck.

E′ ← E \ Ēi

V ′ ← V
k ← 0
while V ′ 6= ∅ do

Pick an s ∈ V ′

Ck ← DFS(G(V,E′), s) // Run a Depth First Search starting
// from vertex s. The result

// is a connected component
V ′ ← V ′ \ Ck

k ← k + 1

end

Algorithm 1: Detection of connected components

The following theorem provides a criterion to decide whether the removal of a set of
edges along a given direction gives rise to PFD of the model.

Theorem 2. Let M be a toy model and its associated directed graph G(V,E). Let further
GC(VC , EC) be the CCG resulting after the removal of a subset of edges Ēi ⊆ Ei, where Ei

is the set of all edges of G(V,E) along the direction d̂i. If GC contains no directed cycles,
then the removal of the edges Ēi implies a PFD of the model M .

Proof. We shall use induction on the number of components, in VC = {C1, C2, . . . , Ck}.

• If k = 1 and there are no directed cycles, the CCG can have no edges. Thus, no discon-
nections between blocks take place and the component C1 can be trivially considered
as a PFD of the model, since the PFD principle is not violated.

• Assuming that the theorem holds for any CCG with k components, where k ≥ 1, we
shall prove it for any CCG with k + 1 components.

5

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

Let ḠC(V̄C , ĒC) be a CCG, with k + 1 components which contains no directed cycles.
We first show that if ḠC contains no directed cycles, then there exists a vertex (com-
ponent) C̄1 ∈ V̄C , with no incoming edges. Since ḠC has no directed cycles, all its
paths will be of finite length. Thus, let the sequence P = (C̄1, C̄2, . . . , C̄m), m ≤ k+1,
be a path of maximal length in ḠC . Clearly, if there was an incoming edge on C̄1,
there should be a vertex C̄0 ∈ V̄C connected to C̄1 through the edge (C̄0, C̄1). In such
a case the path P ′ = (C̄0, C̄1, C̄2, . . . , C̄m), would be longer than P , which has been
assumed to be maximal. Thus, C̄1 has no incoming edges.

Using this fact, since C̄1 has only outgoing edges, the underlying physical connections
between C̄1 and the rest of the components of V̄C , will point towards the direction d̂i.
In other words, the component C̄1 is connected to the rest of the model only on the
one side, leaving its other side free. Thus, applying opposite forces on C̄1 and the rest
of the model, will result in a PFD of the model, since C̄1 is free to move towards the
direction −d̂i (see Fig. 4).

C̄1 GC

Figure 4: Physical disconnection of C̄1 from GC

By detaching the component C̄1 from the model, the remaining components of ḠC(V̄C , ĒC)
form a CCG GC(VC , EC), consisting of k components with no directed cycles. Hence,
the induction hypothesis applies to GC(VC , EC) and implies that a PFD of the sub-
model corresponding to GC(VC , EC) is possible. Combining the physically feasible
disconnection of component C̄1, with the PFD implied by the induction hypothesis for
the submodel corresponding to GC(VC , EC), we obtain a PFD of the entire model M .

The key idea behind the proof of the above theorem is the well known fact (see for
instance [1, 2]) that every directed acyclic graph has a topological ordering.

According to the above theorem if the CCG of a model contains no directed cycles then
a PFD is implied. In the case where directed cycles are present in a CCG, we may easily
eliminate them by removing all the edges of Ēi that give rise to edges of EC lying on the
directed cycles of the CCG. The resulting CCG will no longer have directed cycles, since the
constituent components of each cycle will collapse to a single component. Thus, according
to the theorem this new CCG will imply of PFD of the model. Moreover, if the new CCG
contains two or more components the implied PFD will be a non trivial one.

4 Examples
Let us now consider three illustrative examples.

Example 2. Consider the following model (Fig. 5)

6

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

Figure 5: Model 1

and the corresponding graph

1

2

4

3 5î

î

î

ĵ

ĵ

ĵ

ĵ

Case 1 Removal of edges in the direction î:

The edges to be removed are (2, 3), (1, 5), (4, 5). After the removal, the graph becomes

1

2

4

3 5

ĵ

ĵ

ĵ

ĵ

in which the following two components can be identified

C1 = {1, 2, 3, 4}

C2 = {5}

Next, the CCG is formed by associating to each of the removed edges an edge between

7

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

the components which it was connecting, i.e.

(2, 3) −→ (C1, C1)

(1, 5) −→ (C1, C2)

(4, 5) −→ (C1, C2)

Thus, the CCG GC(VC , EC) is

C1 C2

with VC = {C1, C2} and EC = {(C1, C1), (C1, C2)}. According to Theorem 2, the
edges participating to the loop on C1 are not physically removable, hence the only
PFD can be obtained from the edges (1,5), (4,5).

Case 2 Removal of edges in the direction ĵ:

The edges to be removed are (2, 1), (4, 2), (3, 1), (4, 3). After the removal, the graph
becomes

1

2

4

3 5î

î

î

with the following components
C1 = {2, 3}

C2 = {1, 4, 5}

The CCG is formed by associating to each of the removed edges an edge between the

8

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

components which it was connecting, i.e.

(2, 1) −→ (C1, C2)

(4, 2) −→ (C2, C1)

(3, 1) −→ (C1, C2)

(4, 3) −→ (C2, C1)

Thus, the CCG is

C1 C2

All removed edges are participating the directed cycle between C1 and C2, no discon-
nection is physically feasible in this direction.

Example 3. Consider the following model

Figure 6: Model 2

and the corresponding graph

1 2 3 4

5 6

7

î î î

ĵ ĵ

ĵ ĵ

Case 1 Removal of edges in the direction î:

The edges to be removed are (1, 2), (2, 3), (3, 4). After the removal, the graph becomes

9

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

1 2 3 4

5 6

7

ĵ ĵ

ĵ ĵ

in which the following components can be identified

C1 = {1}

C2 = {2, 3}

C3 = {4}

The CCG is formed by associating to each of the removed edges an edge between the
components which it was connecting, i.e.

(1, 2) −→ (C1, C2)

(2, 3) −→ (C2, C2)

(3, 4) −→ (C2, C3)

Thus, the CCG is

C1 C2 C3

The edges participating to the loop on C2 are not physically removable, hence the only
physically feasible disconnection can be obtained from the edges (1,2), (3,4).

Case 2 Removal of edges in the direction ĵ:

The edges to be removed are (2, 5), (5, 7), (3, 6), (6, 7). After the removal, the graph
becomes

1 2 3 4

5 6

7

î î î

10

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

in which the following components can be identified

C1 = {1, 2, 3, 4}

C2 = {5}

C3 = {6}

C4 = {7}

The CCG is formed by associating to each of the removed edges an edge between the
components which it was connecting, i.e.

(2, 5) −→ (C1, C2)

(5, 7) −→ (C2, C4)

(3, 6) −→ (C1, C3)

(6, 7) −→ (C3, C4)

Thus, the CCG is

C1

C2C3

C4

Since there is not a directed cycle in the connectivity graph all edges are physically
removable.

Example 4. Consider the following model

Figure 7: Model 3

the corresponding graph

11

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

1 2 3 4

5

î î î

ĵ ĵ

Case 1 Removal of edges in the direction î:

The edges to be removed are (1, 2), (2, 3), (3, 4). After the removal, the graph becomes

1 2 3 4

5

ĵ ĵ

in which the following components can be identified

C1 = {1, 4, 5}

C2 = {2}

C3 = {3}

The CCG is formed by associating to each of the removed edges an edge between the
components which it was connecting, i.e.

(1, 2) −→ (C1, C2)

(2, 3) −→ (C2, C3)

(3, 4) −→ (C3, C1)

Thus, the CCG is

C1

C2 C3

All edges participate the directed cycle between C1, C2, C3, hence none of them is
physically removable.

Case 2 Removal of edges in the direction ĵ:

The edges to be removed are (1, 5), (4, 5). After the removal, the graph becomes

1 2 3 4

5

î î î

12

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

in which the following components can be identified

C1 = {1, 2, 3, 4}

C2 = {5}

The CCG is formed by associating to each of the removed edges an edge between the
components which it was connecting, i.e.

(1, 5) −→ (C1, C2)

(4, 5) −→ (C1, C2)

Thus, the CCG is

C1 C2

Since there are no directed cycles, all edges are physically removable.

5 Conclusions and recommendations to the company
A systematic procedure for the Physically Feasible Decomposition (PFD) of an ENGINO R©

TOY SYSTEMmodel has been proposed. A directed graph using as vertices the blocks of the
model, and as edges, connections between them, is used to capture the structure of the model.
The edges of the graph are labeled with a direction vector used to identify geometric direction
of the underlying connection between blocks on the original model. Removing groups of
edges sharing the same direction vector, we identify the resulting connected components of
the graph, which in turn are used to construct a higher - level, structure - graph called the
Components Connectivity Graph (CCG). The absence of directed cycles in the CCG is in
turn shown to play a key role in the determination of the subset of edges whose removal
implies a PFD of the model.

We strongly advise ENGINO to do a pilot-test before implementing this model. In
order to have an effective implementation, the model will need further developments, tests
and implementation issues with respect to its adherence to the company particular needs
and related problems. Even though the model yield good preliminary results, it must be
validated using more complicated toys. This is a crucial step that can be carried by a short-
term project (MSc) or an internship in a close collaboration with the industrial partner.
The company should also consider offering a PhD Scholarship and/or a Postdoc Fellowship.
We believe that the model here described can provide some useful hints with interest for the
optimization of production process.

References
[1] J. Bondy, U. Murty, Graph Theory with Applications, Elsevier Science Publishing Co.

Incorporated, 1976.

[2] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd
ed. Springer Publishing Company, Incorporated, 2008.

13

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

A Appendix - Optimise Engino box sets

Problem formulation
Given a list of models, we want to create a box set that can create as many of these models
within a requirements on cost and complexity. The number of different models will be
denoted by M , and the number of different Engino parts by N . The information on how
many pieces of each part the models require is stored in a matrix P ∈ NM×N . Let the
element Pi,j denote the number of pieces of part j, required to build model i.

An Engino box set consists of xj ∈ N pieces for each of the j = 1, . . . , N parts. A model
i can be created from the box set if xj ≥ Pi,j for each part j. If this holds true, we say
yi = 1, if not yi = 0. The total number of models we can build with a given box set is
then

∑M
i=1 yi. Each part j has a cost cj per piece, so the total cost of a box set becomes∑N

j=1 cjxj .
We can thus set up an optimisation problem to create a box set that can maximise the

number of models, with a cost less than C > 0:

max
y∈{0,1}M

x∈NN

M∑
i=1

yi s.t.

xj ≥ pi,jyi ∀i, j (1)
N∑
j=1

cjxj ≤ C.

Note that the size of the optimisation problem may be reduced if there are models i such
that

∑N
j=1 cjpi,j > C. Any model i with a larger cost than C should therefore be omitted

from the problem.

Design requirements extensions
We will here discuss examples of extra design requirements that may be imposed for a box
set, such as particular models, particular themes or assigned difficulty levels.

If the company wants a box set to be themed, such as a car theme, they can, for example,
require this in two ways: First, as a constraint that a particular set of models belong to the
box. Second, that a particular number of pieces of some of the parts are included. For a
car themed box set, this can be achieved by selecting a collection of car models must be in
the box. Mathematically, we add the constraints yi = 1 for i ∈ L ⊂ {1, 2, . . . ,M}, where
L denotes the car models. Alternatively, a constraint that at least four pieces of the part
“wheel” must be part of the box set would most likely allow for some car models. If j denotes
a “wheel” part, we could then add the constraint xj ≥ 4.

Say the company wants the box set to include at least a given number of models for each
of a given set of difficulty levels. Let the set Dl ⊂ {1, 2, . . . ,M} denote the collection of
models of difficulty level l. To ensure that a box set contains at least Dl models of difficulty
level l, we can introduce the constraint

∑
i∈Dl

yi ≥ Dl.

Implementation example
We finish this section by showing an example of how the box set optimisation can be im-
plemented. The optimisation problem is formulated with the Julia package JuMP [1], and
then solved with Gurobi [2].

For the following example, the matrix P is generated randomly. It contains M = 1000
models with between 4 and N = 17 different parts. Each model consists of between 6 and 66

14

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

pieces. The part costs per piece are all set to the same number, cj = 1 for j = 1, 2 . . . , N , and
we look for box sets with a total cost no more than C = 70. This can easily be formulated
in Julia, and an example code is included in Listing 1. The optimisation problem takes
less than two minutes to complete on a 32 core machine, and produces a box set that can
generate 554 models of the 1000 models, using 70 pieces.

Acknowledgements
The Organising Committee of ESGI125 would like to thank the Mathematics for Industry
Network (MI-NET, www.mi-network.org), COST Action TD1409 for generous funding and
support with the logistics of this first Study Group with Industry in Cyprus. Many thanks
also to the Cyprus University of Technology that provided venue, organisational and funding
support, as well as to all our other sponsors and supporters, and particularly KPMG Cyprus
(major sponsor).

References
[1] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for mathe-

matical optimization. arXiv:1508.01982 [math.OC], 2015.

[2] Gurobi Optimization Inc. Gurobi optimizer reference manual, 2016.

15

Generating Automatic Building Instructions for ENGINO Toy Sets ESGI125

Listing 1: Simple Julia code that can formulate and run optimisation problem with the
Gurobi solver.

us ing JuMP, Gurobi # The requ i r ed Ju l i a packages

Assume we are g iven a matrix P o f s i z e M \ times N

c = ones (N) # The co s t array
C = 70 # The maximum cos t

Require at l e a s t D_l models o f s i z e >= 42
models_l = (1 : s i z e (P , 1)) [sum(P, 2) .>= 42]
D_l = 4

Set up opt im i sa t i on model problem
m = Model (s o l v e r=GurobiSolver ())

@var iab le s m begin
y [i =1:M] , (Bin , s t a r t =0) # Models , b inary v a r i a b l e s
x [j =1:N] , (Int , s t a r t =0) # Parts , i n t e g e r v a r i a b l e s
end

@object ive (m, Max, sum(y)) # Maximize number o f models

@const ra int s m begin
dot (c , x) <= C
[i =1:models , j =1: par t s] , x [j] >= P[i , j]∗ y [i]
sum(y [i] f o r i in models_l) >= D_l
end

The opt im i sa t i on problem i s so lved by the s o l v e (m) c a l l
s t a tu s = so l v e (m)

The box s e t and models that can be c rea ted
boxp ieces = getva lue (x)
boxmodels = f i nd (ge tva lue (y))

16

